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Departures from the Fermi Golden Rule

Fu-Sui Liu,1,2,5 Kuang-Ding Peng,1 and Wan-Fang Chen3,4

This paper shows that exact calculation for the transition probability in quantum me-
chanics gives rise to breaking the Fermi golden rule, and energy conservation, and gives
two examples.

1. INTRODUCTION

We will emphasize that two assumptions were made in calculating the tran-
sition probability before this paper was prepared. Suppose the HamiltonianH can
be put in the formH = H (0)+ V, V = A exp(iωt)+ A+ exp(−iωt), |a〉 is a dis-
crete state ofH (0), |b〉 the state in a continuous spectrum ofH (0), B the domain
of |b〉, A a time-independent operator, and that at initial timet0, which is taken to
be zero, the system is in the state|a〉. The transition probabilityWa→B into one of
the states in the domainB at timet by absorbing an energyhω is (Greiner, 1994;
Messiah, 1962; Schiff, 1968)

Wa→B =
∫

B
Wa→bρb(Eb) dEb, (1)

Wa→b = 1

h2 |Aba|2 f (t, ωb − ωa − ω), (2)

f (t, ωb − ωa − ω) = sin2 (ωb−ωa−ω)t
2(

ωb−ωa−ω
2

)2 , (3)

lim
t→∞ f (t, ωb − ωa − ω) = 2π tδ(ωb − ωa − ω), (4)
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whereρb(Eb) is the density of states atEb, Eb = hωb, Ea = hωa, and Aba =
〈b|A|a〉. Take−ε/2 < Eb < ε/2. The first assumption to calculate the integral in
Eq. (1) in Greiner (1994), Messiah (1962), and Schiff (1968) is that the widthε

is sufficiently small thatAba andρb are practically constant over the integral so
that they can be taken outside the integral sign in Eq. (1). The second assumption
in Greiner (1994), Messiah (1962), and Schiff (1968) is thatt is sufficiently large
for ε to be much greater than the period of oscillation of thef function in Eq. (3),
i.e. ε À 2πh/t , so that Eq. (4) can be used. Under the two assumptionsWa→B is
(Greiner, 1994; Messiah, 1962; and Schiff, 1968)

Wa→B = 2π

h
|Aba(Eb)|2ρb(Eb)t. (5)

That theWa→B ∝ t is called the Fermi golden rule (Greiner, 1994; Schiff, 1968).
In the transitiona→ B the energy is conserved because of Eq. (4) (Greiner, 1994;
Messiah, 1962; Schiff, 1968).

This paper points out that in some cases one cannot use the two assump-
tions, and this leads to breaking the Fermi golden rule and energy conservation
in the transition processes. We take the hydrogen ionization as the first example
in Section 2, and the relaxation process in complex macroscopic system as the
second example in Section 3.

2. HYDROGEN IONIZATION

In case of hydrogen ionization in a ground state,Ea = hωa = −13.6 eV.
Greiner (1994) gives

ρb(Eb) = mL3k

8π3h2 sinθ dθ dφ, (6)

whereθ andφ are the polar angles of wave vectork to the direction of electric field,
Eb = h2k2/(2m), m is the electron mass, andL3 the volume of the box. The box
is a capacitor. The fieldE(t) = 2E0 sin(ωt) is along the direction perpendicular to
the capacitor.|Aba(Eb)| is (Schiff, 1968)

|Aba(Eb)| =
∣∣∣∣∣ 32eE0ka5

0 cosθ(
πa3

0L3
)1/2(

1+ k2a2
0

)3
∣∣∣∣∣ , (7)

wherea0 is the Bohr radius. Substituting Eqs. (6) and (7) into Eq. (5) and complet-
ing the integration overθ andφ, Wa→B in Eq. (5) becomes

Whydrogen= 1024me2E2
0a7

0

3h3

k3(
1+ a2

0k2
)6 t. (8)

Equation (8) obeys the Fermi golden rule. In case of boundary ionization−hωa =
hω, the energy conservation tells usEb = h2k2/(2m) = hω + hωa = 0, and thus
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Whydrogen in Eq. (8) is zero. It is obviously not reasonable that the transition
probability of hydrogen boundary ionization is zero.

Now let us abandon the two assumptions made in Section 1, and make an
exact calculation for the integral of Eq. (1) for the case of hydrogen boundary
ionization. In case of hydrogen boundary ionization Eq. (1) becomes

Whydrogen,exact= 1

h2

∫
|Aba|2ρb(Eb)

sin2 ωbt
2(

ωb
2

)2 dEb, (9)

Substituting Eqs. (6) and (7) into Eq. (9) and completing the integration overθ

andφ yield

Whydrogen,exact= 4096
√

2m5/2e2E2
0a7

0

3πh9/2 I , (10)

I =
∫

sin2 ωt
2√

ω(1+ 4.85× 10−17ω)6
dω, (11)

whereω = ωb for convenience. Equation (11) clearly shows that|Aba|2ρb(Eb)
is strongly energy-dependent. The exact integration for Eq. (11) is shown in
Fig. 1. Figure 1 tells us thatWhydrogen,exactis not equal to zero, and is nearly time-
independent in a wide time interval. Therefore, we can say that the Fermi golden
rule has not been obeyed. BecauseEb = hωb can be nonzero in the hydrogen
boundary ionization, the energy is not conservative in this process. To understand
the origin of the nonenergy conservation let us see Fig. 2. Figure 2 clearly indicates
that the maximum transition probability is not atωb = 0, and the second peak is
not too low.

3. KWW FORM OF RELAXATION FUNCTION

In complex macroscopic systems, such as the fast ionic conductor, the
Kohlrausch–Williams–Watts (KWW) form of relaxation, i.e. exp[−(t/τ ∗)β ]
(β < 1), was observed and mentioned in many papers (William and Watts, 1970;
León et al., 1997; Ngai and Le´on, 1999). Ifβ = 1, then KWW form becomes
Debye form. Several models, such as the coupling model (Ngaiet al., 1984),
the diffusion-controlled model (Elliot and Owens, 1991), and the jump relaxation
model (Callaway, 1991), have been proposed to explain the KWW form. This
paper proposes a phonon model, and makes an exact calculation for the related
transition probability of the relaxing particle without using the two assumptions
in Section 1. The relaxing particle–phonon system can be described by

H =
∑

i

c+i ci

[
ε +

∑
q

Mq(a+q + aq)

]
+
∑

q

ωqa+q aq, (12)
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Fig. 1. The curve of log(I ) vs. log(t). I is proportional to the transition probability,Whydrogen,exact, of
the hydrogen boundary ionization (see Eq. (10)). This curve shows thatWhydrogen,exactis nearly equal
to a constant over the range 10−13 < t < 106 (seconds).

wherec+i anda+q are the creation operators of the relaxing particle at sitei and
phonon with wave vectorq, respectively.Mq is (Callaway, 1991)

Mq = Ci

(
h

2N Mωq

)0.5

|q|, (13)

where N is the number density of atoms,C the coefficient of the deformation
potential, andM the mass of the atom. The probability amplitude of finding the
relaxing particle still at sitei at timet > 0 was given by Mahan (1981) asG(t).
G(t) is

G(t) = i e−i t (ε−1) e−8(t), (14)
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Fig. 2. The curve ofM(= sin2(ωt/2)/[
√
ω(1+ 4.85× 10−17ω)6]) vs.ω. t = 10−3 s. The transition

probability atω→ dω in the hydrogen boundary ionization is proportional toM . If the energy is
conservative in the hydrogen boundary ionization, then the maximum value ofM should be atω = 0,
and the second peak should be very low.

1 =
∑

q

|Mq|2
hωq

, (15)

8(t) = 1
h2

∑
q

(Mq)2

(
2Nq + 1

2

)
sin2 ωqt

2(ωq

2

)2 , (16)

Nq = 1

e
hωq

K T − 1
, (17)

The relaxation functionQ(t) is

Q(t) = |G(t)|2. (18)
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Ross showed that

Q(t) = e−P(t), (19)

whereP(t) is the transition probability of the relaxing particle at sitei at t = 0
and still at sitei at t . Substituting Eqs. (14), (16), and (18) into Eq. (19) yields

P(t) = 1

h2

∑
q

(Mq)2 (2Nq + 1)
sin2 ωqt

2(ωq

2

)2 . (20)

We do not use the two assumptions in Section 1 for calculation of Eq. (20). From
the deformation potential theory the longitudinal acoustic phonon is important
(Callaway, 1991). The density of states of the longitudinal acoustic phonon is
(Ashcrift and Mermin, 1976)

ρ(ω) = 3ω2

2π2v3
, (21)

wherev is the acoustic velocity. We takeωq = ω in Eq. (21) and in the following for
convenience. The relation betweenω andq in Eq. (13) is complex. From complete
disorder to perfect order of the lattice the relation betweenq andω is transformed
from q∝ ω0 to q∝ ω1 (Bergman, 1971). For a real complex system we take that

q =
(
ω

v

)1−n

q̄n, (22)

whereq̄ is the average value of the phonon wave number (Bergman, 1971). Sub-
stituting Eqs. (13), (21), and (22) into (20) and considering that the low frequency
phonon is important in the integral yield

P(t) = 6C2q̄2nK T

π2N Mv5−2n

∫
sin2 ωt

2

ω1+β dω, (23)

where 2n = 1+ β. β = 1 andβ < 1 correspond to complete and incomplete
disorders, respectively. Completing the integration in Eq. (23) yields

P(t) =
( t

τ ∗
)β

, (24)

τ ∗ =
(

2π2N Mv4−β0(1+ β) sin(πβ/2)

3C2K Tπ q̄1+β

) 1
β

(25)

Substituting Eq. (24) into Eq. (19) yields the KWW form of relaxation function.
However, if we use the two assumptions in Section 1, then we will obtain the Fermi
golden ruleP(t)∝ t1 from Eq. (20), and thus cannot obtain the KWW form.
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