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Departures from the Fermi Golden Rule

Fu-Sui Liu,**° Kuang-Ding Peng! and Wan-Fang Cheri*

This paper shows that exact calculation for the transition probability in quantum me-
chanics gives rise to breaking the Fermi golden rule, and energy conservation, and gives
two examples.

1. INTRODUCTION

We will emphasize that two assumptions were made in calculating the tran-

sition probability before this paper was prepared. Suppose the Hamiltbinczam
be putin the formH = HO + vV, V = Aexp(wt) + At exp(—iwt), |a) is a dis-
crete state oH (@, |b) the state in a continuous spectrumif?), B the domain
of |b), A atime-independent operator, and that at initial tigevhich is taken to
be zero, the system is in the st#. The transition probabilityV,_, g into one of
the states in the domaid at timet by absorbing an energyw is (Greiner, 1994;
Messiah, 1962; Schiff, 1968)

Wi = / Wi bp(E) dE, )
B
1 2
Wop = p|Aba| f(t,a)b—a)a—a)), (2)

in2 (Wb —wa — o)t
sir? (o=sa=o

f(t,wp — wa — w) = o7 ©))
(2=5=2)
tlim f(t, wp — wa — ) = 27t§(wp — wWa — W), 4)
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where py(Ep) is the density of states d&y, Ep = hwy, Ea = hw,, and Apy =
(b|Ala). Take—e/2 < Ep < €/2. The first assumption to calculate the integral in
Eqg. (1) in Greiner (1994), Messiah (1962), and Schiff (1968) is that the width

is sufficiently small thatA,, and py, are practically constant over the integral so
that they can be taken outside the integral sign in Eq. (1). The second assumption
in Greiner (1994), Messiah (1962), and Schiff (1968) is thatsufficiently large

for € to be much greater than the period of oscillation of thieinction in Eq. (3),

i.e.e > 2mh/t, so that Eq. (4) can be used. Under the two assumptnsg is
(Greiner, 1994; Messiah, 1962; and Schiff, 1968)

2
Wy g = F|Aba(Eb)|2Pb(Eb)t- 5)

That theW,_, g  t is called the Fermi golden rule (Greiner, 1994; Schiff, 1968).
In the transitiora — B the energy is conserved because of Eq. (4) (Greiner, 1994;
Messiah, 1962; Schiff, 1968).

This paper points out that in some cases one cannot use the two assump-
tions, and this leads to breaking the Fermi golden rule and energy conservation
in the transition processes. We take the hydrogen ionization as the first example
in Section 2, and the relaxation process in complex macroscopic system as the
second example in Section 3.

2. HYDROGEN IONIZATION

In case of hydrogen ionization in a ground stafg,= hw, = —13.6 eV.
Greiner (1994) gives

m L3k
Ep) = —— sin6 do d¢, 6
Po(Bo) = o= ¢ (6)

wheref andg¢ are the polar angles of wave veckato the direction of electric field,
Ep = h?k?/(2m), m s the electron mass, and the volume of the box. The box
is a capacitor. The fiel&(t) = 2E, sin(wt) is along the direction perpendicular to
the capacitor} Aya(Ep)| is (Schiff, 1968)
32e EBokag coso

(ragL) " *(1+ k2ag)’ |
whereag is the Bohr radius. Substituting Egs. (6) and (7) into Eq. (5) and complet-
ing the integration ove# and¢, W,_, g in Eq. (5) becomes
102an¢ERy K

3 (1+a2?)°
Equation (8) obeys the Fermi golden rule. In case of boundary ionization, =
hw, the energy conservation tells Es = h?k?/(2m) = hw + hw, = 0, and thus

| Aba( Eb)| =

(7)

(8)

Whydrogen =
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Whydrogen in EQ. (8) is zero. It is obviously not reasonable that the transition
probability of hydrogen boundary ionization is zero.

Now let us abandon the two assumptions made in Section 1, and make an
exact calculation for the integral of Eq. (1) for the case of hydrogen boundary
ionization. In case of hydrogen boundary ionization Eq. (1) becomes

Si wpt

5% dEs, ©)
2

Substituting Egs. (6) and (7) into Eq. (9) and completing the integrationver
and¢ yield

1 2
Whydrogen,exactz F | Abal“Pb(Eb)

4096y/2m°/2e?E2a]
Whydrogen,exacF 37092 0% L (10)
| f Sire & d (11)
=] Jo(l+485x 10 7w)s

wherew = wyp for convenience. Equation (11) clearly shows thAga|?on(Ep)

is strongly energy-dependent. The exact integration for Eq. (11) is shown in
Fig. 1. Figure 1 tells us thaWhydrogen, exaciS NOt equal to zero, and is nearly time-
independent in a wide time interval. Therefore, we can say that the Fermi golden
rule has not been obeyed. Becauge= hwy, can be nonzero in the hydrogen
boundary ionization, the energy is not conservative in this process. To understand
the origin of the nonenergy conservation let us see Fig. 2. Figure 2 clearly indicates
that the maximum transition probability is notag = 0, and the second peak is

not too low.

3. KWW FORM OF RELAXATION FUNCTION

In complex macroscopic systems, such as the fast ionic conductor, the
Kohlrausch-Williams—Watts (KWW) form of relaxation, i.e. extf/c*)?]
(B < 1), was observed and mentioned in many papers (William and Watts, 1970;
Lebn et al,, 1997; Ngai and Len, 1999). If8 = 1, then KWW form becomes
Debye form. Several models, such as the coupling model (Kgai., 1984),
the diffusion-controlled model (Elliot and Owens, 1991), and the jump relaxation
model (Callaway, 1991), have been proposed to explain the KWW form. This
paper proposes a phonon model, and makes an exact calculation for the related
transition probability of the relaxing particle without using the two assumptions
in Section 1. The relaxing particle—phonon system can be described by

H =Zcﬁci[e+ZMq(a;+%)]+quaa’aq, 12)
i q q
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Fig. 1. The curve of log() vs. logt). | is proportional to the transition probabilitWhydrogen, exaat Of
the hydrogen boundary ionization (see Eq. (10)). This curve showS\tatogen, exacitS nearly equal
to a constant over the range 7§ < t < 10° (seconds).

wherec’ andaq+ are the creation operators of the relaxing particle atiséted
phonon with wave vectay, respectivelyMy is (Callaway, 1991)

h 0.5
M — G 1
o= () o (13)

where N is the number density of atom€, the coefficient of the deformation
potential, andM the mass of the atom. The probability amplitude of finding the
relaxing particle still at sité at timet > 0 was given by Mahan (1981) &(t).
G(t)is

G(t) =i e7Mtle=4) g=2O), (14)
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Fig. 2. The curve ofM(=sir?(wt/2)/[/o(1+ 4.85 x 10~ 7w)®]) vs. w. t = 10-3 s. The transition
probability atw — dw in the hydrogen boundary ionization is proportionalNb If the energy is
conservative in the hydrogen boundary ionization, then the maximum vaMestiould be at» = 0,
and the second peak should be very low.

M 2
A=Y 'hafj' , (15)
q q
2Ng + 1\ sir? 2
o(t) = h—%;(Mq)z( it ) Szw_q)i , (16)
2
Ng = # 17)
exTt —1

The relaxation functiorQ(t) is

Q(t) = IGM)I. (18)
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Ross showed that
Q(t) =e "0, (19)

whereP(t) is the transition probability of the relaxing particle at sitatt =0

and still at sita att. Substituting Egs. (14), (16), and (18) into Eqg. (19) yields

1 sirg 2

PO = > (Mg)? (2Ng + 1) T )g : (20)
a 2

We do not use the two assumptions in Section 1 for calculation of Eq. (20). From
the deformation potential theory the longitudinal acoustic phonon is important
(Callaway, 1991). The density of states of the longitudinal acoustic phonon is
(Ashcrift and Mermin, 1976)

2
T 272yl

wherev is the acoustic velocity. We tak& = »in Eq. (21) and in the following for
convenience. The relation betweemndq in Eq. (13) is complex. From complete
disorder to perfect order of the lattice the relation betwgandw is transformed
from g o< w® to g ox ! (Bergman, 1971). For a real complex system we take that

q= (f)l_na”. (22)

\

(@) (21)

whereq is the average value of the phonon wave number (Bergman, 1971). Sub-
stituting Egs. (13), (21), and (22) into (20) and considering that the low frequency
phonon is important in the integral yield

P(t) =

242n -nza)_t
6C“q"KT [SI 2 do. (23)

72N Mv5—2n wlth

where =1+ . g =1andg < 1 correspond to complete and incomplete
disorders, respectively. Completing the integration in Eq. (23) yields

P(t) = (Ti)ﬁ (24)
. (27*NMVT(1+ ) singzp/2)\ 7 -
- ( 3CPK TG ) (@3)

Substituting Eq. (24) into Eq. (19) yields the KWW form of relaxation function.
However, if we use the two assumptions in Section 1, then we will obtain the Fermi
golden ruleP(t) o t* from Eq. (20), and thus cannot obtain the KWW form.
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